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I. INTRODUCTION

Since the seminal work of Black and Scholes �1,2�, who
drew an analogy between the random motion of microscopic
particles and the unpredictable evolution of stock prices,
methods from theoretical physics have proved very useful
for pricing various financial derivative products �3–5�. The
pricing of derivative products is based on a model for the
evolution of the probability function of the underlying asset.
In order for a model to describe the economic reality accu-
rately, a sufficiently general evolution for the probability dis-
tribution must be allowed for. Nevertheless, the simple dif-
fusion model of Black and Scholes �BS� is still widely used.
Much of its success is due to the availability of closed-form
analytical pricing formulas for many types of derivatives �6�.

It is known for a long time that the BS model is only a
crude approximation to the economic reality and that its as-
sumptions are violated in actual markets. Perhaps the most
illustrative violation is that the volatility implied from traded
vanilla options, the implied volatility is not constant across
strikes and maturities. Examples of models that tackle such
violations are local volatility processes �7,8�, jump processes
�7�, Lévy processes �9�, and stochastic volatility models �10�.
A stochastic volatility model that has been particularly suc-
cessful at explaining the implied volatility smile in equity
and foreign exchange markets is the Heston model �11�. In
his seminal paper, Heston �11� derived a closed form solution
for the price of a vanilla option, which enables a quick and
reliable calibration to market prices, especially for liquidly
traded vanilla options with maturities between 2 months and
2 years �12�. Contrary to the Black-Scholes model, to date in
the Heston model no closed-form analytic formulas have
been found for exotic options �for recent results see �13��.
Since no such formulas are available in the literature for any
but the simplest payoffs, often costly numerical techniques
must be used �see �14� and references therein�.

The original mathematical solution of the option pricing
problem was formulated within the framework of partial dif-

ferential equations, but an equivalent description with path
integral methods was developed in the pioneering work by
Linetsky �15� and Dash �16,17�. They showed that path de-
pendent exotic options can be straightforwardly priced with
the path integral method. This should be intuitively clear: In
the path integral formalism, a probability is assigned to every
evolution path of the asset. In the formulation with partial
differential equations, such quantities are typically difficult
to access.

Path integral methods have also been used in the pricing
of options within stochastic volatility models �18,19� and in
the related problem of non-Gaussian diffusion �20� �at the
end of Sec. II A we come back to this connection�, but to the
best of our knowledge no explicit option pricing formula as
cheap to evaluate as Stein and Stein’s �21� or Heston’s for-
mulas �11� have yet been derived using path integrals. We
will show in the present paper how to carry out this task for
the Heston model. The result we thereby obtain corresponds
to the existing result �11� for which the calibration and cor-
respondence to market data has already been investigated,
see for example, �22–27�. For a thorough discussion on when
which approach should be used we refer to �28� and refer-
ences herein.

It is also known that there are still important features of
asset price distributions which are absent in the Heston
model, for example, empirical studies of time series provide
evidence of the long time memory of volatility �29,30�. Since
models containing a memory effect through retarded interac-
tion, for example, in the context of polarons �31�, have been
solved within a path integral framework, we think our
method can prove to be useful in more realistic models for
the market also.

The full power of the path integral method becomes clear,
when we exploit its flexibility by calculating the price of an
option in a setting where not only the volatility but also the
interest rate is stochastic and follows the widely used Cox,
Ingersoll, and Ross �CIR� model �32–35�. To the best of our
knowledge, no exact closed-form formula for this problem is
available. Therefore, we have checked our formulas against a
Monte Carlo simulation.

The plan of the paper is as follows. In Sec. II A, we out-
line our model, which is the one introduced by Heston. Ex-
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tensions of our method to different models are however
straightforward. Further in this section we derive a closed-
form solution for the time evolution of the asset price. In
Sec. II B we present a closed-form pricing formula for plain
vanilla options which only involves one numerical integra-
tion of a compilation of elementary functions. In Sec. III we
will extend the Heston model to include stochastic interest
rate, in Sec. III A we present a closed-form solution for the
vanilla option price which still contains only one numerical
integration of a compilation of elementary functions. In Sec.
III B we test this result with a Monte Carlo method and
discuss the relevance of including stochastic interest rate.
Conclusions are drawn in Sec. IV.

II. STANDARD HESTON MODEL

A. Model and its path integral representation

We will concentrate on assets following a diffusion pro-
cess described by the following two equations introduced by
Heston �11�:

dS = �0Sdt + S�vdw1, �1�

dv = �0��0 − v�dt + ��v��dw1 + �1 − �2dw2� . �2�

Here S is the asset price, �0 is a constant drift factor, v is the
variance of the asset, �0 is the spring constant of the force
that attracts the variance to its mean reversion level �0 �also
called the mean reversion speed�, � is the volatility of the
variance, and w1 and w2 are independent Wiener processes
with unit variance and zero mean. The asset price follows a
Black-Scholes process �1�, whereas the volatility obeys a
Cox-Ingersoll-Ross process �32�.

There are two general approaches to determine the price
of an option in a path integral context. One could, based
upon Eqs. �1� and �2� determine the probability distribution
for the asset price at the strike time T conditional on the
values of the asset and the variance at the present time
PS��ST ,vT�S0 ,v0�. The expectation value of the option price
at time T can be calculated by integrating the gain you make
with a certain outcome of ST multiplied by the probability of
obtaining that outcome PS��ST ,vT�S0 ,v0� over all possible
values of ST. To obtain the present value of the price one then
discounts this expectation value with the risk free interest
rate r. For a European call option this can be written as

C = e−rT�
−�

+�

dSTdvT max�ST − K,0�PS��ST,vT�S0,v0� . �3�

We will refer to this approach as the “asset propagation ap-
proach” since PS is the propagator for a distribution of asset
prices �and volatilities�.

The other approach focuses on the option price rather than
the asset evolution, as will be referred to as the “option
propagation approach.” In his paper �6�, Heston discusses the
subtle differences between the asset point of view and the
option price point of view, and this discussion is also rel-
evant to the present path integral framework. Heston moti-
vates that the time evolution of the option price U�S ,v , t� is

governed by the following partial differential equation �pde�:

�U

�t
= − rS

�U

�S
+ rU − ��0��0 − v� − �v	

�U

�v
−

1

2
vS2�2U

�S2

− ��vS
�2U

�S � v
−

1

2
�2v

�2U

�v2 , �4�

where � is a parameter introduced �11� on the basis of no-
arbritage arguments and setting up a risk-free portfolio. If
one makes the substitution U=ertV one obtains the following
pde for V as a function of the asset price and the volatility:

�V

�t
= − rS

�V

�S
− ��0��0 − v� − �v	

�V

�v
−

1

2
vS2�2V

�S2

− ��vS
�2V

�S � v
−

1

2
�2v

�2V

�v2 . �5�

Based on this pde, one can find a kernel PV that propagates a
given final distribution V�ST ,v ,T� backward to the present
value V�S0 ,v0 ,0� of the option. Since the value of the option
at the final time T is known, V�ST ,v ,T�=e−rTU�ST ,v ,T�
=e−rT max�ST−K ,0�, the value of the option now is obtained
through

C = e−rT�
−�

+�

dSTdvT max�ST − K,0�PV��ST,vT�S0,v0� , �6�

Furthermore the pde �5� is equal to the Kolmogorov back-
ward equation corresponding to the following system of sto-
chastic differential equations:

dS = rSdt + S�vdw1, �7�

dv = ��0��0 − v� − �v	dt + ��v��dw1 + �1 − �2dw2� . �8�

This means that both approaches can be dealt with simul-
taneously by considering a generalized stochastic process,

dS = �Sdt + S�vdw1, �9�

dv = ��� − v�dt + ��v��dw1 + �1 − �2dw2� , �10�

and calculating its transition probability P��ST ,vT�S0 ,v0�.
The “asset propagation” approach �3� can then be retained by
simply replacing �, �, and � by �0, �0, and �0 and the
“option propagation” approach �5� and �6� by replacing �, �,
and � by r ,�0+�, and �0�0 / ��0+��. The pricing formula for
the European call is the same as �3� where this time the
transition probability P��ST ,vT�S0 ,v0� is the one correspond-
ing to �9� and �10�,

PS��ST,vT�S0,v0� = �P��ST,vT�S0,v0���=�0,�=�0,�=�0
,

PV��ST,vT�S0,v0� = �P��ST,vT�S0,v0���=r,�=�0+�,�=�0�0/��0+��.

�11�

We will calculate the transition density P for the general
stochastic process �9� and �10�.

For later convenience we make the following substitu-
tions:
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x = ln
 S

S0
� − �t .

z = �v , �12�

x is called the logreturn and z is the volatility of the asset
price. After these substitutions, Eq. �2� becomes

dx = −
z2

2
dt + zdw1, �13�

dz = � 1

2z

�� −

�2

4
� − �

z

2

dt +

�

2
��dw1 + �1 − �2dw2� .

�14�

The substitution

y�t� = x�t� −
�

�
�z2�t� − ��t� ,

leads to two uncorrelated equations

dy = 
 �

�
� −

1

2
�z2dt + z�1 − �2dw1, �15�

dz = � 1

2z

�� −

�2

4
� − �

z

2

dt +

�

2
dw2. �16�

We will assume that the initial volatility z�t=0�=z0 is known
�12�. The probability that y has the value yT and z has the
value zT at a later time T will be denoted as P��yT ,zT�y0 ,z0�.
The advantage of transforming to these variables is that dw1
and dw2 are uncorrelated, so that the following expression
holds for P��yT ,zT�y0 ,z0�:

P��yT,zT�y0,z0� =� DyDz exp
− �
0

T

�LQ�y�t�,z�t��

+ LCIR�z�t��	dt� , �17�

where the quadratic Lagrangian LQ�y�t� ,z�t�� equals

LQ�y�t�,z�t�� =
1

2z2�1 − �2��ẏ − 
 �

�
� −

1

2
�z2
2

, �18�

and the Lagrangian corresponding to the CIR process,
LCIR�z�t��, is given by �36�

LCIR�z� =
2

�2�ż −
1

2
�1

z

�� −

�2

4
� − �z
�2

−
1

4z2
�� −
�2

4
�

−
�

4
, �19�

The first step in the evaluation of Eq. �17� is the integration
over all y paths. Because the action is quadratic in y this
integration can be done analytically and yields

P��yT,zT�y0,z0� =� Dz�t�
�2�z̄2�1 − �2�

exp� ���/� − 1/2�
�1 − �2�

	�yT − y0� −
1

2�1 − �2�
 �

�
� −

1

2�2

z̄2

−
�yT − y0�2

2z̄2�1 − �2�
− �

0

T

dtLCIR�z�t��
 . �20�

Note that the probability to arrive in �yT ,zT� only depends on
the average value of the volatility along the path z�t�: z̄2

=�0
Tz2�t�dt, in agreement with Ref. �21�. However, this aver-

age value appears in the denominator of the third term, and
to perform the functional integral one needs to bring this into
the numerator. This is achieved by rewriting part of the ex-
pression �20� as follows:

1

�2�z̄2�1 − �2�
exp
−

�yT − y0�2

2z̄2�1 − �2�
�

= �
−�

+� dk

2�
exp
i�yT − y0�k −

�1 − �2�
2

k2� z2�dt .

�21�

Combining Eqs. �20� and �21� and making the substitution
k= l+ i ���/���−�1/2��

�1−�2� the transition probability becomes

P��yT,zT�y0,z0� = �
−�

+� dl

2�
exp�i�yT − y0�l�� Dz�t�

	exp�− �
0

T

dt�LCIR�z�t��

+
1

2
z2��1 − �2�l2 + 2li
 �

�
� −

1

2�
�� .

�22�

The path integral over the CIR action is formally equivalent
to the exactly solvable radial harmonic oscillator �37� and,
fortunately, adding terms proportional to z2 to the action does
not spoil this equivalence. The full path integral over z�t� can
be carried out without approximations with the following
result:

P�yT,zT�y0,z0� =
1

2�
exp��2�

�2 T + 
2
��

�2 −
1

2
�ln
 zT

z0
�

−
�

�2 �zT
2 − z0

2�
�
−�

+� 4
 exp�i�yT − y0�l�
�2 sinh�
T�

	�z0zT exp
−
2


�2 �z0
2 + zT

2�coth�
T��
	I2��/�2−1
 4
z0zT

�2 sinh�
T��dl . �23�

where
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 =
�

2
�
�

�
+ il��2

+ l�l − i� . �24�

is the l-dependent frequency of the radial harmonic oscillator
that corresponds to the CIR Lagrangian �19�. After trans-
forming back to the x variable we see that also the integral
over the final value zT can be done analytically �see, e.g.,
�38��, yielding the marginal probability distribution
P��xT�0,z0�=�−�

+�dzTP��xT ,zT�0,z0� �written in the original
variable v� as a simple Fourier integral,

P��xT�0,v0� =
1

2�
exp
 �

�2 ���T + v0���
−�

+�

N2��/�2

	exp�i
xT +
�

�
�v0 + ��T��l

−
2


�2 sinh�
T�
�cosh�
T� − N�v0
dl ,

�25�

where N is

N =
1

cosh�
T� +
1

2

�� + il���sinh�
T�

. �26�

Note the similarity of the expression �25� with the result
obtained in Ref. �20�, derived for a general stochastic process
with non-Gaussian noise.

B. Pricing of plain vanilla options

From now on we follow the option propagation approach
and set � equal to r. The price of a call option C with expi-
ration date T and strike K when the transition probability is
known is given by Eq. �3�. Writing this formula in the x
variable and thereby inserting the result �25� for the transi-
tion probability results in

C = e−rT�
−�

+�

dxT max�S0 exp�xT� − K,0�P��xT�0,v0� ,

�27�

where the risk free interest rate was restored and denoted by
r. Now there are still two numerical integrations that must be
done. Following the derivation outlined in Ref. �20� we can
rewrite expression �27� so that only one numerical integra-
tion remains:

C =
S0 − e−rTK

2
+ i�

−�

� 1

l
�exp�i
 �

�
a + xe − rT�l +

�

�2a

	�S0 exp
� −

�

�
a� − e−rTK exp���
 − S0 + e−rTK� dl

2�
,

�28�

with

xe = ln
 K

S0
� , �29a�

a = v0 + ��T , �29b�


 =
�

2
�
�

�
+ il� − ��2

+ l�l + i� , �29c�

M = 
cosh�
T� +
1

2

�� + il�� − ���sinh�
T��−1

,

�29d�

� =
2
v0

�2 sinh�
T�
�M − cosh�
T�� +

2

�2�� ln M , �29e�

� =
2
v0

�2 sinh�
T�
�N − cosh�
T�� +

2

�2�� ln N , �29f�

and 
 defined as before �24�. We have tested this result
against the formula stated in Ref. �11�. This confirmed the
correctness of formula �28�. Now we are confident to explore
new grounds with our method in the following section.

III. STOCHASTIC INTEREST RATE

A. Derivation of the option price

In the preceding section we assumed the interest rate to be
constant. Here we allow the interest rate to change in time,
r�t�. Applying the Black and Scholes no-arbitrage argument
on Heston’s risk-free portfolio motivation for the evolution
of the option price, we again obtain the partial differential
equation �5� with r�t� rather than a constant r,

�V

�t
= − r�t�S

�V

�S
− ��0��0 − v� − �v	

�V

�v
−

1

2
vS2�2V

�S2

− ��vS
�2V

�S � v
−

1

2
�2v

�2V

�v2 . �30�

For a given function r�t� this leads to a kernel
PV�ST ,vT�S0 ,v0�r�t�� so that the option price becomes

C�r�t�� = �
−�

+�

dSTdvT max�ST − K,0�

	e−�r�t�dtPV�ST,vT�S0,v0�r�t�� . �31�

Note that the option price is now a functional of the given
time evolution of the interest rate r�t�. As in the preceding
section, it is convenient to introduce new integration vari-
ables

y�t� = ln
 S

S0
� −

�

�
�z2�t� − ��t� , �32�

z�t� = �v�t� . �33�

In the path integral treatment, the kernel can be written as a
sum over all possible realizations of y�t� and z�t�, weighed
by the action functional of the system
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C�r�t�� = �
−�

+�

dxTdvT max�exT − K,0�e−�0
Tr�t�dt� DyDz

	exp
− �
0

T

�LQ�y�t�,z�t�,r�t�� + LCIR�z�t��	dt� ,

�34�

where LQ is the quadratic Lagrangian �18�,

LQ�y�t�,z�t�� =
1

2z2�1 − �2��ẏ�t� − r�t� − 
 �

�
� −

1

2
�z2�t�
2

,

�35�

and LCIR is the CIR Lagrangian. Of course, we cannot know
what particular realization of the interest rate r�t� will appear
in the future. We assume the interest rate to follow a CIR
process which is uncorrelated from the other two stochastic
processes,

dr = �r��r − r�dt + �r
�rdw3. �36�

The value for the option price then needs to be averaged over
the realization of r�t� in this CIR process. Where the calcu-
lation of the expectation value of such a functional might
become cumbersome with conventional probabilistic tech-
niques, it can be evaluated very elegantly with the Feynman-
Kac formula,

C = �C�r�t��� =� DrC�r�t��exp
− �
0

T

LCIR�r�t��dt� ,

�37�

where LCIR is the Lagrangian for the CIR process. The final
result can be expressed with a modified propagator
P��ST ,vT ,rT�S0 ,v0 ,r0� as

C = �
−�

+�

dSTdvTdrT max�ST − K,0�P��ST,vT,rT�S0,v0,r0� ,

�38�

with

P��ST,vT,rT�S0,v0,r0� =� DyDzDre−�0
Tr�t�dt

	exp
− �
0

T

�LQ�y�t�,z�t�,r�t��

+ LCIR�z�t�� + LCIR�r�t��	dt� .

�39�

The stochastic interest rate makes the vanilla price dependent
on the specific path followed by the interest rate. This part of
the payoff has been taken into the calculation of the propa-
gator, where it is analytically tractable, and no longer appears
explicitly in the expression �38� for the option price. Herein
lies the strength of the path integral approach, to price path-
dependent options. With a stochastic interest rate the Euro-
pean vanilla option becomes dependent on the entire path of

the interest rate and is still solved in a very straightforward
way. This is promising for more general option types, such as
the barrier and Asian options that we are currently investi-
gating.

A useful substitution to perform the functional integra-
tions is

�1�t� = �r�t� ,

�2�t� = y�t� − �
0

t

r�t��dt�. �40�

As was the case for the Lagrangian corresponding to the
volatility, the Lagrangian corresponding to the interest rate
process will also be formally equivalent to the Lagrangian
corresponding to a radial harmonic oscillator; furthermore
the addition of another term quadratic in �1 stemming from
the discount factor does not spoil the correspondence. The
result reads as follows:

C =
1

2�S0 − K exp
 �r

�r
2ar + �r�0��


+ i�
−�

� 1

l �K exp
�r�0� +
�r

�r
2ar� − S0

+ exp�i
 �

�
a + xe�l +

�

�2a +
�r

�r
2ar


	�S0 exp
−
�

�
a + � + �r� − K exp�� + �r�
� dl

2�
.

�41�

To make it surveyable, we introduced the following nota-
tions:

ar = r0 + �r�rT ,


r =
�r

2
��r

2

�r
2 + 2il ,


r�l� =
�r

2
��r

2

�r
2 + 2�il + 1� ,

Mr = 
cosh�
rT� +
�r

2
r
sinh�
rT��−1

,

�r =
2
rr0

�r
2 sinh�
rT�

�Mr − cosh�
rT�� + 2
�r�r

�r
2 ln Mr,

�r�l� =
2
r�l�r0

�r
2 sinh�
r�l�T�

�Nr�l� − cosh�
r�l�T�	

+ 2
�r�r

�r
2 ln Nr�l� .

These notations reflect the extension to the case of stochastic
interest rate �symbols with subscript r� of the corresponding
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quantities in the Heston model �Eqs. �29a�–�29f��. Notice the
resemblance with formula �28�. Formula �41� still contains
just one numerical integration with an integrand composed
out of elementary functions. To the best of our knowledge,
only approximate analytical formulas are available when
both the volatility and interest rate are stochastic �39�. Be-
cause of the lack of alternative exact analytical expressions,
we have checked the validity of our formula �41� against
numerical Monte Carlo simulations. Our Monte Carlo
method is outlined below.

First notice that substitutions �40� transform the x variable
into a variable x̃, independent of the interest rate by subtract-
ing the time averaged interest rate r̄, x̃=x− r̄. This results in
the same equation as in the constant interest rate situation,
Eq. �13�. Also the discount factor only contains r̄. This
means that the knowledge of the probability distribution r̄ is
sufficient to calculate the price by means of the formula �28�
derived in the constant interest rate setting. So the Monte
Carlo scheme used is the following: First, values for r̄ are
simulated and used to calculate the option price for these
values, next the price is averaged over all the simulations. A
value for r̄ is simulated as follows: Time is discretized in
little time steps �, we sample a path for r and integrate along
this path. To calculate the probability distribution for r̄, we
used the result that the stochastic time increment of a CIR
variable over a small time step �t follows a noncentral �2

distribution �14�. The probability distribution of the average
interest rate r̄ is then simulated by generating many r paths
in discretized time. As shown in Fig. 1, the agreement be-
tween the analytical �thick full line� and numerical option
prices is excellent.

In this section the option propagation approach was fol-
lowed from the beginning. In this setting it is necessary to
make a choice between the two approaches from the start
because in the asset propagation approach one would actu-
ally have to introduce a stochastic process for the drift �0
instead of for the interest rate. That these two should follow

the same stochastic process is not clear. Since the option
propagation approach is the most common one anyway we
followed this approach. If one does want to introduce a sto-
chastic process for the drift �0 this poses no problem and the
derivation of an option price in this setting would be com-
pletely similar.

B. Results and discussion

In the current treatment, we have two layers of generali-
zation as compared to the Black-Scholes result. First, the
volatility appearing in the Black-Scholes process is
stochastic—this leads to the Heston model. Second, the in-
terest rate of the Black-Scholes model is also stochastic—
leading to our present results. In this section, we argue that
both improvements can have an equally important effect on
the option price.

This is illustrated in Fig. 1, where the different approaches
are compared. Let us start with the most complete model,
where both interest rate and volatility are stochastic. The
resulting option price, Eq. �41�, for this model is shown as a
thick red curve. The result from the closed-form expression
agrees well with the Monte Carlo simulation, shown as
crosses.

Now we strip off one layer of complexity, and fix the
interest rate r—it is no longer a stochastic variable. Then we
obtain the Heston model as an approximation to a stochastic
interest rate world. The question poses itself of which fixed
interest rate to use, if we want to make the comparison. Two
choices are shown in Fig. 1, r=r�0� and r=�r. The former
choice �dotted blue curves� sets the Heston interest rate equal
to the interest rate at time 0, whereas the latter choice
�dashed-dotted curves� sets the Heston interest rate equal to
the mean reversion level �r. For the parameter values used in
Fig. 1, the most complete result lies between the two Heston
approximations, but this is not necessarily so. Figure 2 shows
that for some choices of other �realistic� parameters, the full

FIG. 1. �Color online� This figure shows the result of different pricing formulas from which the Black-Scholes result �with interest rate
r=�r� has been subtracted. Since we are not considering a specific asset, the option price could be stated in any currency, therefore the
deviation is given in arbitrary units. The thick �red� curve shows our analytical results for the model with both stochastic interest rate r and
stochastic volatility. The crosses represent results from a Monte Carlo simulation of our model, confirming the analytical formula. The blue
dotted curve and the blue dashed-dotted curve show the results for the Heston model with constant interest rate r=r�0� and r=�r, respec-
tively. The dashed curve shows the results for a Black-Scholes model with r=r�0�. The following parameter values were used for all three
panels: �=1, �=0.2, �=0.04, v0=0.04, T=1, S0=100, �r=1.8, �r=0.1, �r=0.03, r0=0.035. The correlation coefficient is for panel �a�
�=−0.5, �b� �=0, and �c� �=0.5.
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result can lie outside both Heston approximations. Neverthe-
less, as � becomes very large, the stochastic interest rate will
be drawn very tightly to the mean reversion rate �r, and one
expects the full result to be near the Heston approximation
with r=�r. When � is very small, the stochastic interest rate
will not be drawn quickly toward �r so that when also �r is
small, the full results will be near the Heston approximation
with r=r�0�.

Next, we strip off the second layer of approximation, and
also fix the volatility. This results in the familiar Black-
Scholes model as the crudest approximation to our system.
Now a second choice must be made: Which value of the
volatility to use. Here, we take the stochastic volatility at
time zero to be equal to the mean reversion level of the
volatility CIR process, so that the ambiguity of choice is
avoided. The choice for what interest rate to use, however,
remains. In Fig. 1, we show the Black-Scholes results with
r=r�0� �dashed line� and r=�r �full line�. We have plotted all
the results relative to the Black-Scholes result with r=�r to
emphasize the differences rather than the absolute magnitude
of the prices �for this reason, the r=�r Black-Scholes result
is the baseline of the plots�. The difference between the three
panels of Fig. 1 is the value of the correlation between asset
price and volatility.

From Figs. 1 and 2, it is clear that both levels of approxi-
mation �keeping the volatility constant and keeping the inter-
est rate constant� have an equally large effect on the option
price. Even within the Heston framework, the choice of what
value to use for the interest rate is seen to influence the price
considerably. Choosing a different interest rate, or keeping
the interest rate as a stochastic variable, leads to a price
correction that is as large as the price correction obtained by
going from the Black-Scholes to the Heston model. This re-
sult emphasizes the importance of a correct treatment of the

interest rate in pricing models. �This also depends strongly
on the length of the lifetime of the option.�

Finally we must remark that the price differences when
working within the standard Heston model or within the ex-
tended one can be influenced by the calibration method. For
Figs. 1 and 2 we used the same parameters for the volatility
process both in the standard model and in the extended one,
parameter values for the interest rate process are calibrated
separately. Literature shows that the parameter values for the
volatility process �see, for example, �24,11�� and the interest
rate process �see, for example, �35,33�� can attain values in a
broad range containing the values we chose to produce Figs.
1 and 2. However, if the parameter values obtained for the
interest rate process are used in formula �41� to calibrate the
remaining parameter values for the volatility process one
might get different results. We cannot exclude that this cali-
bration approach would lead to smaller price differences be-
tween the two approaches. However such a calibration is a
research area on its own and is outside the scope of this
paper.

IV. CONCLUSIONS

We have developed a path integral method to derive
closed-form analytical formulas for the asset price distribu-
tion in the Heston stochastic volatility model. Closed-form
formulas are obtained for the logreturn of the derivative and
the vanilla option price. The presented results correspond to
the known semianalytic results obtained from solving the
partial differential equation �11� by standard techniques.

The flexibility of our approach is demonstrated by extend-
ing the results to the case where the interest rate is a stochas-
tic variable as well, and follows a CIR process. For this case,
to the best of our knowledge, no exact analytical solutions
have been derived before. We have checked our semianalyti-
cal results for the model with both stochastic volatility and
stochastic interest rate against a Monte Carlo simulation. The
quantitative analysis shows that the effect of stochastic inter-
est rate on the Heston model can be as large as the effect of
the stochastic volatility on the Black-Scholes model. How-
ever we did not perform a full calibration, which might in-
fluence the results. Finally, the analogy between stochastic
interest rate models and path dependent options makes our
method promising for the pricing of exotic derivative prod-
ucts.
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FIG. 2. �Color online� As in Fig. 1, the result of different pricing
formulas from which the Black-Scholes result �with interest rate
r=�r, thin black line� has been subtracted, is shown. The following
parameter values were used: �=1, �=0.2, �=0.04, v0=0.04, T=1,
S0=100, �r=0.5, �r=0.3, �r=0.03, r0=0.035, �=0.
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